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Report

Individual-Specific Liability Groups in Genetic Linkage, with Applications
to Kindreds with Li-Fraumeni Syndrome

Sanjay Shete,' Christopher I. Amos," Shih-Jen Hwang,* and Louise C. Strong’

Departments of 'Epidemiology and *Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston

In this report, we present a simple and powerful way to incorporate individual-specific liability classes into linkage
analysis. The proposed method is applicable to both quantitative and qualitative traits. In linkage studies, we may
have information about different covariates. Incorporation of these covariates along with the estimates of residual
familial effects, age-at-onset effects, and susceptibility in the definition of liability classes can increase the power
to detect genetic linkage. In this study, we show how one can form individual-specific liability classes and use these
classes in standard linkage-analysis programs, such as the widely used LINKAGE package, to perform more powerful
genetic linkage analysis. Our simulation study shows that this approach yields higher LOD scores and more-accurate
estimates of the recombination fraction in the families showing linkage. The proposed method is also applied to
kindreds collected, at the M. D. Anderson Cancer Center, through probands with childhood soft-tissue sarcoma.
Confirmed germ-line mutations in the p53 tumor-suppressor gene have been identified in these families. Application
of our method to these families yielded significantly higher LOD scores and more-accurate recombination fractions

than did analysis that did not account for individual-specific covariate information.

In linkage analysis, liability classes are used to define
penetrance values for each of the possible genotypes of
the trait loci. A diallelic locus with disease allele D and
normal allele N has three possible genotypes—NN, ND,
and DD—and one usually specifies a penetrance value
for each of these three genotypes (Terwilliger and Ott
1994). For example, if the disease follows single dom-
inant Mendelian inheritance, then one would specify
penetrance values of 0, 1, and 1 for NN, ND, and DD,
respectively. If the penetrance is reduced with possible
phenocopies, then one might specify penetrance values
of, say, 0.1, 0.8, and 0.8, respectively. Liability groups
are useful for classification of individuals into different
penetrance groups, on the basis of their age and sex.
While performing linkage analysis, investigators typi-
cally use 10-20 liability groups based on the subjects’
age and sex. For the kth age group (which includes in-
dividuals of age x,_, to x,), the penetrance may be de-
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fined for the ith genotype, as (1/2)[F(x,_,) + F(x,)]
where, at the lower limit of the kth age group, penetrance
is E(x,_,), and, at the upper limit, it is E(x,) (Ott 1999).
In this report, we propose the use of individual-specific
liability classes. This is a useful and powerful approach
for modeling, because, even if two individuals are in the
same age group and have the same sex, they may have
different environmental exposures, smoking statuses,
eating habits, and ethnicities, any of which might further
modify their risk of developing a disease.

Incorporation of these environmental and behavioral
risk factors to develop individual-specific penetrance clas-
ses should result in more-powerful tests of linkage. This
approach would be useful for complex disorders such as
cancer, in which many factors—such as smoking, disease
status of first- and second-degree relatives, ethnic group,
sex, eating habits, and socioeconomic status—play an im-
portant role in modifying one’s risk. The proposed ap-
proach can be easily adapted in the standard linkage-
analysis programs—such as FASTLINK, LINKAGE, and
VITTESE (Cottingham et al. 1993; Terwilliger and Ott
1994; O’Connell and Weeks 1995)—in a very simple
manner, by modifying the parameter file and recompiling
the program in order to allow enough liability classes to
model each individual.
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Table 1

Estimates of 6 and of LOD Scores, for a Dichotomized Trait
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MEAN (MEDIAN) ESTIMATES

Individual-Specific Liabilities Common Liabilities 10 Liabilities
TRUE 6 Estimated 6 LOD Score Estimated 6 LOD Score Estimated 6 LOD Score
Heritability .26:
.0 .015 (.0) 4.37 (4.24) .047 (.0) 1.62 (1.44) .0 (.0) 2.42 (2.34)
.05 .05 (.05) 3.12 (3.00) .08 (.05) 1.22 (1.02) .0 (.0) 1.91 (1.86)
A1 (1) 2.09 (1.82) A3 (1) .90 (.73) .02 (.0) 1.42 (1.37)
Heritability .18:
.0 .025 (.0) 2.23 (2.14) .095 (.01) .71 (.55) .01 (.0) 1.02 (.98)
.05 .06 (.01) 1.63 (1.50) 13 (.05) .55 (.39) .02 (.0) 81 (.79)
A1 A1 (1) 1.13 (.89) 18 (.1) 43 (.22) .04 (.0) .61 (.57)
Heritability .11:
.0 .07 (.0) .78 (.61) .16 (.01) .26 (.16) .05 (.0) .30 (.27)
.05 12 (.05) .58 (.43) 20 (1) 21 (.09) .09 (.0) 23 (.20)
1 16 (.1) 43 (.25) 22(.1) .18 (.05) .13 (.0) .19 (.14)

To evaluate the power gain due to this approach, we
performed simulation studies. We generated phenotype
value according to the model

Y=g+G+B,X,+6,Xy+e, (1)

where g, is the major gene effect, G, is the polygenic
effect, X values are uncorrelated environmental effects,
and e, is the error. We assumed a polygenic variance of
05 = 2, error variance ¢/ = 1, and 3, = 8, = 2. The
X covariates were generated from a normal distribution
with mean and variance equal to 1. We considered a
dominant disease model with a disease-allele frequency
of 0.1 (the results for other disease models were similar
and are not presented). Because we are considering a
dominant disease model, g; takes two values: a for geno-
types homozygous and heterozygous for the disease al-
lele and —a for the genotypes homozygous for the nor-
mal allele. We chose values of a = 1.5, 2.0, and 2.5;
these choices resulted in heritabilities of 0.11, 0.18, and
0.26, respectively. Individuals were classified as affected
if their phenotypic values exceeded a given threshold.
These thresholds were chosen so that, conditional on
covariate values, phenocopies are ~12.4% and pene-
trances for the disease allele genotypes are 71%-95%.
Prevalence of the disease can be calculated by the usual
methods. Let p and g be the frequencies of the normal
and the disease allele, respectively. Then, for a dominant
model, prevalence is defined as p** phenocopies +
(2pq + q*) * penetrance. Here, one would use mean val-
ues of phenocopies and penetrances, of all individuals
in the sample. For our simulated data, prevalence was
23%-28%. A four-allele equifrequent marker was sim-
ulated at a recombination fraction (8) of 0.0, 0.05, and
0.1. We simulated 500 replicate samples. In each rep-
licate, we simulated 100 sibships with five sibs per sib-
ship. We performed linkage analysis in three ways: first,

by assigning a single liability class for all individuals;
second, by assigning 10 liability classes, by dividing
groups into 10 classes based on their covariate values;
and, finally, by assigning each individual to a separate
class, conditional on the covariate values. The 10 classes
were obtained by dividing the range of covariate values
into 10 groups. From equation (1), conditional on g, and
on covariates X,; and X,;, the mean phenotype value of
the ith individual is p,; = g, + 8,X,; + 8,X,,, and the
conditional variance ¢ is equal to ¢ + ¢2. Then, the
individual-specific penetrance for the ith individual is
[i é(x,p.;,02)dx, where k is the given threshold and
o(x,u.,0>) is the normal density function with mean
u.; and variance 0. We use the pu, and ¢ given above.
In general, one would obtain these parameter estimates
on the basis of regressive model-based segregation anal-
ysis (S.A.G.E. 1997).

The results of this analysis are reported in table 1: the
true values of 6 are given in the first column, and the
means of estimated values of 6, as well as of the cor-
responding LOD scores, when individual-specific liabil-
ities are used, are given in the second and the third col-
umns, respectively; when a single liability class is used
for all individuals, these parameter estimates are given
in the fourth and the fifth columns, respectively; and,
finally, when 10 liability classes are used, these estimates
are given in the sixth and the seventh columns, respec-
tively; all values in parentheses are median estimates of
these two parameters. From table 1, it can be seen that
the use of individual-specific liability groups significantly
increased the power to detect linkage. The mean LOD
scores were two to three times higher when our method
was used. Also noteworthy is that the estimates of  were
more accurate when the proposed method was used.
Also, the 95% confidence intervals based on the pro-
posed method were significantly smaller (data not
shown). Assigning, say, 20 classes would increase the
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Table 2
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Mean (Median) Estimates of § and of LOD Scores, for a Quantitative Trait

MEAN (MEDIAN) ESTIMATES

Individual-Specific Densities

Unconditional Densities

10 Groups of Densities

TRUE 6 Estimated 6 LOD Score Estimated 6 LOD Score Estimated 6 LOD Score
Heritability .26:
.0 .0 (.0) 17.52 (17.36) .021 (.0) 3.44 (3.25) .0 (.0) 6.82 (6.82)
.05 .05 (.05) 11.91 (11.71) 052 (.05) 2.50 (2.36) .0 (.0) 5.42 (5.42)
1 1(.1) 7.85 (7.62) 1(.1) 1.68 (1.46) 0 (.0) 4.08 (3.96)
Heritability .18:
.0 .0 (0.0) 10.87 (10.88) .05 (.0) 1.45 (1.37) .0 (.0) 2.83 (2.80)
.05 .04 (.05) 7.62 (7.34) .08 (.05) 1.08 (.90) .0 (.0) 227 (2.24)
A1 .08 (.1) 5.12 (4.77) 13 (.1) .82 (.54) .0 (.0) 1.74 (1.72)
Heritability .11:
.0 .01 (.0) 4.66 (4.60) .12 (.01) 49 (.35) (.0) .81 (.79
.05 .04 (.01) 3.31 (3.12) 16 (.05) 38 (.22) 1(.0) 65 (.62
1 .08 (.05) 2.32 (2.07) 18 (.1) .31 (.14) 1(.0) .51 (.47

LOD scores, compared with the results for 10 classes,
but these LOD scores were still smaller than those re-
sulting from our approach (data not shown).

Usually in linkage analysis, underlying quantitative
phenotype values are available, on the basis of which
individuals are classified as either affected or unaffected,
according to whether their phenotype exceeds a certain
predetermined threshold (as we did in our simulation in
the previous paragraph); but it is known that use of these
quantitative-trait values instead of dichotomization of the
trait can give much more power to detect linkage. Our
method can easily be applied to quantitative traits. We
used the individual-specific liability-classes method for the
quantitative trait simulated earlier. In this case, we used
a normal probability-density function for the penetrance
classes. Conditional on covariates, for the ith individual
with genotype g; and phenotype Y, penetrance was de-
fined as the probability-density functlon, (Y, p.,02),
where p_, and o are as defined above. The results of this
analysis are reported in table 2. Once again, as expected,
we observed a significant gain in power (i.e., a 5-10-fold
increase) to detect linkage when we used these individual-
specific liability classes. The estimates of § were also more
accurate, and the 95% confidence intervals (data not
shown) were much smaller, in the data analysis that used
the proposed method. Also, the LOD scores were higher
when quantitative-trait values, rather than dichotomiza-
tion of the trait, were used.

Next, linkage analysis using the proposed approach
was performed on three large white families ascertained
through childhood soft-tissue sarcoma and found to
have Li-Fraumeni syndrome (LFS [MIM 151623]). LFS
is characterized by increased incidence of soft-tissue sar-
coma, osteosarcoma, breast cancer, adrenocortical car-
cinoma, leukemia, and brain tumors, at early ages and
in multiple family members (Li and Fraumeni 1969,
1982). The families studied here are part of a study of

patients with childhood sarcoma who were surveyed at
The University of Texas M. D. Anderson Cancer Center.
The details of the clinical data and of the method of
data collection have been reported elsewhere (Strong et
al. 1987). Confirmed germline mutations in the p53 tu-
mor-suppressor gene have been identified in these fam-
ilies. Excess aggregation of cancer in relatives of patients
with childhood sarcoma was found to be well described
by segregation of a rare autosomal dominant locus with
age-dependent penetrance (Bondy et al. 1992; Lustbader
et al. 1992). Here we studied linkage in three families
in which confirmed mutations in the p53 gene have been
identified; these three families with LFS included 610,
32, and 31 individuals, with 51, 5, and 9 affected by
cancer, respectively.

To elucidate genetic and other covariate effects, we
performed regressive logistic model-based segregation
analysis implemented by the REGTL program of
S.A.G.E. (Bonney 1986; S.A.G.E. 1997). The best-fitting
model was a rare dominant disorder, as expected. Var-
ious parameter estimates are reported in table 3. The
mean ages at onset were 32.19 years for those carrying
the disease allele and 104.6 years for subjects homo-

Table 3

Estimates of Various Parameters of the Segregation
Analysis

Parameter Estimate (SD)
Frequency of A .01301 (.0072)
Baseline parameter 8, —2.8061 (.5192)
Baseline parameter By —7.4107 (1.3096)
Coefficient of smoking —.0952 (.0619)
Age-adjusted coefficient of AA .0872 (.0109)
Age-adjusted coefficient of BB .0709 (.0149)
Mean age at onset for AA 32.19 (4.866)
Mean age at onset for BB 104.59 (18.482)
Susceptibility 1.000 (...)
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zygous for the normal allele, for both males and females.
The advanced estimated age at onset for normal-allele
homozygotes indicates that these individuals would die
from other competing risk factors before developing the
disease—and, hence, would likely be censored before
developing cancer. Susceptibility was found to be 100%.
The individual-specific penetrance was calculated by use
of the estimates of various parameters associated with
the regressive model, as follows. Let y; be the phenotype
(0 or 1) of the ith individual. Here, phenotypic value 1
means that the individual was affected, and 0 means
that the individual was unaffected. For an affected in-
dividual i with genotype u; and age at onset a,, we use
the penetrance

v a5, €XP [au,s,ai + f(uiasiaxisys,aym,syﬁ)]
{1 +exp [au,s,ai + f(ui,siJXi’yS,ayM,ayF,)] o

(2)

where s, is the sex of #; X, is a vector of covariates; S,,
M,, and E are the spouse, mother, and father of i; and
v, is the susceptibility (i.e., the probability that a ran-
domly selected individual from this population is

affected).

f(ussaX’y59yM7yF) = Bu,s + 65(ys) + Op(ym)

+Op(yr) + Gy + .o+ Ex

v My

where @8, is a baseline parameter that is the natural
logarithm of the odds of being affected versus being
unaffected (when other components are zero), e, is the
age coefficient, and &’s are regressive familial effects. We
integrate equation (2) from zero, to the age at exami-
nation, a;, both for unaffected individuals and for af-
fected individuals for whom the age at onset, a,, is un-
known (Bonney 1986; Elston and George 1989). This
gives the penetrance value

1
Vs, / :
1 +exp [_[au,s,ai + f(”iasisxisys,ayM,ayF,)]]

(3)

Missing covariate information can be handled by us-
ing various techniques, such as imputation for missing
data, which we will not discuss here because they are
not the primary concern of this report. We performed
linkage analysis by using the FASTLINK program with
individual-specific penetrance classes, obtained by use of
equations (2) and (3), for the p53 mutation—carrying
families with LFS that have been described above. We
found very strong evidence for linkage, with a LOD
score of 8.27 at = 0.01; at § = 0, the LOD score was
8.23. Linkage analysis with a single penetrance class
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gave a LOD score of 4.27 at § = 0.1 and of 1.56 at
6 = 0. We also analyzed these families by using 10 li-
ability classes. An individual was assigned to one of the
10 classes based on affection status, and either age at
onset or, for an unaffected individual, age at examina-
tion. Penetrance for each class was assigned as average
risk, by genotype, for that group. This linkage analysis
gave a LOD score of 6.68 at § = 0. Hence, when these
mutation-carrier families were used, we obtained a
higher LOD score and more-accurate estimates of 6 by
using individual-specific penetrances. This observation
is consistent with our simulation results presented in
tables 1 and 2.

In conclusion, for complex diseases involving multiple
genetic and environmental determinants, it is extremely
useful to employ techniques that are simple to implement
and that result in higher power to detect true linkage.
In this report, we have presented a simple yet very pow-
erful way to incorporate individual-specific liability clas-
ses into linkage analysis of quantitative and qualitative
traits. Compared with the use of just a single liability
class, the use of 10-20 classes based on age and/or sex
can increase a LOD score; nonetheless, individual-spe-
cific liability classes still yield higher LOD scores and
more-accurate estimates of 0. In addition, our method
of forming liability classes is more objective than arbi-
trarily establishing 10-20 classes based on age and/or
sex only. This is particularly important in the study of
complex disorders, which can be strongly dependent on,
among other factors, environmental covariates and eth-
nic group. This approach can be implemented whenever
one has estimates of various genetic and environmental
covariate effects, which are usually obtained by segre-
gation analysis.

Comparison of the proposed approach with other
methods that jointly allow for adjustment of covariates
would be interesting. Although the variance-components
method can include covariates jointly in the modeling
of linkage, that procedure treats allele effects as random,
and so this method is distinct from what we propose
here.
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